Coupling Lattice Boltzmann and Finite Volume Methods for Simulation of Reactive Transport
نویسندگان
چکیده
A numerical model is developed to study reactive transport at pore scale. It couples lattice Boltzmann and finite volume methods to compute fluid flow and reaction processes. The model is validated by comparing numerically simulated reactive flow against the published results of dynamic imaging of carbonate dissolution. The porosity profiles and permeability-porosity relationship are compared with the experimental results. The variation of the porous structure is quantitatively analysed and compared with those obtained from dynamic imaging experiments. The findings show that the numerical framework provides robust and accurate prediction of porous media alteration due to flow of reactive fluids and can be used as a predictive tool for resolving reaction mechanisms in porous media with applications in reservoir engineering, carbon dioxide sequestration, hydrological and environmental studies.
منابع مشابه
A hybrid scheme of single relaxation time lattice Boltzmann and finite volume methods coupled with discrete ordinates method for combined natural convection and volumetric radiation in an enclosure
This paper is focused on the application of hybrid Single relaxation time lattice Boltzmann and finite volume methods in conjunction with discrete ordinates method to simulate coupled natural convection and volumetric radiation in differentially heated enclosure, filled with an absorbing, emitting and non-scattering gray medium. In this work, the velocity and temperature fields are calculated u...
متن کاملNumerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow
This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...
متن کاملEvaluation of two lattice Boltzmann methods for fluid flow simulation in a stirred tank
In the present study, commonly used weakly compressible lattice Boltzmann method and Guo incompressible lattice Boltzmann method have been used to simulate fluid flow in a stirred tank. For this purpose a 3D Parallel code has been developed in the framework of the lattice Boltzmann method. This program has been used for simulation of flow at different geometries such as 2D channel fluid flow an...
متن کاملSimulation of Micro-Channel and Micro-Orifice Flow Using Lattice Boltzmann Method with Langmuir Slip Model
Because of its kinetic nature and computational advantages, the Lattice Boltzmann method (LBM) has been well accepted as a useful tool to simulate micro-scale flows. The slip boundary model plays a crucial role in the accuracy of solutions for micro-channel flow simulations. The most used slip boundary condition is the Maxwell slip model. The results of Maxwell slip model are affected by the ac...
متن کاملCoupling of Lattice Boltzmann Equation and Finite Volume Method to Simulate Heat Transfer in a Square Cavity
The objective of this paper is to assess the effectiveness of the coupled Lattice Boltzmann Equation (LBE) and finite volume method strategy for the simulation of the interaction between thermal radiation and laminar natural convection in a differentially heated square cavity. The vertical walls of the cavity are adiabatic, while its top and bottom walls are cold and hot, respectively. The air ...
متن کامل